Abstract

The phagocyte NADPH oxidase is activated during phagocytosis to produce superoxide, a precursor of microbicidal oxidants. The activation involves assembly of membrane-integrated cytochrome b558 comprising gp91(phox) and p22(phox), two specialized cytosolic proteins (p47(phox) and p67(phox)), each containing two Src homology 3 (SH3) domains, and the small G protein Rac. In the present study, we show that the N-terminal SH3 domain of p47(phox) binds to the C-terminal cytoplasmic tail of p22(phox) with high affinity (KD = 0.34 microM). The binding is specific to this domain among several SH3 domains including the C-terminal one of p47(phox) and the two of p67(phox) and requires the Pro156-containing proline-rich sequence but not other putative SH3 domain-binding sites of p22(phox). Replacement of Trp193 by Arg in the N-terminal SH3 domain completely abrogates the association with p22(phox). A mutant p47(phox) with this substitution is incapable of supporting superoxide production under cell-free activation conditions. These findings provide direct evidence that the interaction between the N-terminal SH3 domain of p47(phox) and the proline-rich region of p22(phox) is essential for activation of the NADPH oxidase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.