Abstract

Nanogap biosensors have emerged as promising platforms for detecting and measuring biochemical substances at low concentrations. Although the nanogap biosensors provide high sensitivity, low limit of detection (LOD), and enhanced signal strength, it requires arduous fabrication processes and costly equipment to obtain micro/nanoelectrodes with extremely narrow gaps in a controlled manner. In this work, we report the novel design and fabrication processes of vertical nanogap structures that can electrically detect and quantify low-concentration biochemical substances. Approximately 40 nm gaps are facilely created by magnetically assembling antibody-coated nanowires onto a nanodisk patterned between a pair of microelectrodes. Analyte molecules tagged with conductive nanoparticles are captured and bound to nanowires and bridge over the nanogaps, which consequently causes an abrupt change in the electrical conductivity between the microelectrodes. Using biotin and streptavidin as model antibodies and analytes, we demonstrated that our nanogap biosensors can effectively measure the protein analytes with the LOD of ∼18 pM. The outcome of this research could inspire the design and fabrication of nanogap devices and nanobiosensors, and it would have a broad impact on the development of microfluidics, biochips, and lab-on-a-chip architectures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.