Abstract

Cyanide (C≡N) can lead to blood, cardiovascular system, and nervous system disorders owing to the acute and chronic toxicity; thus, aiming at the group or individual poisoning incidents, it is necessary to develop the sensitive and credible method for rapid on-site detection of poisons cyanide. Surface-enhanced Raman spectroscopy (SERS) with the advantages of providing fingerprint information of target molecules and single-molecules sensitivity has been widely used in on-site analysis; however, the SERS measurements always suffer from the problem of the stability of substrates. Here, the polyvinylpyrrolidone (PVP)-stabilized Au NPs (PVP-Au NPs) have been assembled through the simple, convenient evaporation-induced strategy with the large-scale hotspots substrates. The presence of PVP can not only facilitate the assembly of Au NPs but also prevent the corrosion of CN- towards the Au NPs with the formation of [Au (CN)2]-1, providing high stable and reproducible SERS signals. Moreover, the PVP-Au NPs have been assembled on the Si wafer to fabricate the portable SERS chip for rapid on-site detection of CN- with an RSD of 5.8% and limitation of 100ppb. Furthermore, by coupling a portable Raman spectrometer, the SERS spectra of CN- spiked into different specimens to simulate the poison samples have been collected and analyzed on SERS chips with the recovery of 89-103% and RSD not higher than 11.3%. Consequently, the fabricated SERS chip with assembled PVP-Au NPs can provide sensitive and credible detection for CN- in different specimens, and then would satisfy the rapid on-site evaluation of CN- in poisoning incidents with the portable Raman spectrometer. Graphical Abstract.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.