Abstract

The B-domain, which is one of IgG-binding domains of staphylococcal protein A, was repeated five times and a cysteine residue was introduced at its C-terminus by a genetic engineering technique. The resulting protein, designated B5C1, retained the same IgG-binding activity as native protein A. The B5C1 was assembled on a gold plate surface by utilizing a strong affinity between thiol of cysteine and a gold surface. IgG-binding activity of B5C1 on a gold surface was much higher than that of physically adsorbed B5, which lacks cysteine residue. Furthermore, antigen-binding activity of immobilized antibody molecules through the use of assembled B5C1 on a gold surface was about 4.3 times higher than that of physically adsorbed antibody molecules. Immobilization of highly oriented antibody molecules was realized with the engineered IgG-binding protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.