Abstract

Diffusion of metal atoms onto a molecular monolayer attached to a conducting surface permits electronic contact to the molecules with minimal heat transfer or structural disturbance. Surface-mediated metal deposition (SDMD) involves contact between "cold" diffusing metal atoms and molecules, due to shielding of the molecules from direct exposure to metal vapor. Measurement of the current through the molecular layer during metal diffusion permits observation of molecular conductance for junctions containing as few as one molecule. Discrete conductance steps were observed for 1-10 molecules within a monolayer during a single deposition run, corresponding to "recruitment" of additional molecules as the contact area between the diffusing Au layer and molecules increases. For alkane monolayers, the molecular conductance measured with SDMD exhibited an exponential dependence on molecular length with a decay constant (β) of 0.90 per CH(2) group, comparable to that observed by other techniques. Molecular conductance values were determined for three azobenzene molecules, and correlated with the offset between the molecular HOMO and the contact Fermi level, as expected for hole-mediated tunneling. Current-voltage curves were obtained during metal deposition showed no change in shape for junctions containing 1, 2, and 10 molecules, implying minimal intermolecular interactions as single molecule devices transitioned into several molecules devices. SDMD represents a "soft" metal deposition method capable of providing single molecule conductance values, then providing quantitative comparisons to molecular junctions containing 10(6) to 10(10) molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.