Abstract

Detailed chemical kinetic modeling based on computational quantum chemistry has been quite successful in making quantitative predictions about some systems, particularly the combustion of small hydrocarbons and certain areas of atmospheric chemistry. The gas phase chemistry of many processes in high-temperature inorganic systems, from materials synthesis to propulsion to waste incineration, could in principle be modeled with equal or greater success using detailed chemical kinetic modeling. This contribution provides examples from our own work of how computational quantum chemistry can be used in developing gas phase reaction mechanisms for modeling of high temperature materials processing. In the context of CVD of silicon from dichlorosilane, CVD of alumina from AlCl 3/H 2/CO 2 mixtures, and particle nucleation from silane, this detailed chemical kinetic modeling has given us insight into gas phase reaction pathways that we would not likely have gained by other means.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.