Abstract
DNA nanostructures as scaffolds for drug delivery, biosensing, and bioimaging are hindered by its vulnerability in physiological settings, less favorable of incorporating arbitrary guest molecules and other desirable functionalities. Noncanonical self-assembly of DNA nanostructures with small molecules in an alternative system is an attractive strategy to expand their applications in multidisciplinary fields and is rarely explored. This work reports a nitrogen-enriched carbon dots (NCDs)-mediated DNA nanostructure self-assembly strategy. Given the excellent photoluminescence and photodynamic properties of NCDs, the obtained DNA/NCDs nanocomplex holds great potential for bioimaging and anticancer therapy. NCDs can mediate DNA nanoprism (NPNCD ) self-assembly isothermally at a large temperature and pH range in a magnesium-free manner. To explore the suitability of NPNCD in potential biomedical applications, the cytotoxicity and cellular uptake efficiency of NPNCD are evaluated. NPNCD with KRAS siRNA (NPNCD K) is further conjugated for KRAS-mutated nonsmall cell lung cancer therapy. The NPNCD K shows excellent gene knockdown efficiency and anticancer effect in vitro. The current study suggests that conjugating NCDs with programmable DNA nanostructures is a powerful strategy to endow DNA nanostructures with new functionalities, and NPNCD may be a potential theranostic platform with further fine-tuned properties of CDs such as near-red fluorescence or photothermal activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.