Abstract

Transient bridges of DNA have been used to direct the self assembly of microscopic spherical particles into a variety of crystal structures. Here, by selectively reprogramming the strength of the DNA interactions within such crystals we form colloidal clusters with well-defined valence and symmetry at high yield. We first form ‘host’ crystals containing a small proportion of ‘impurity’ particles bearing a unique DNA sequence, and then add soluble DNA strands that cause the host crystal to melt while preserving the nearest neighbor bonds around each impurity particle. This yields clusters with cubical and cuboctahedral symmetry from host crystals having BCC and FCC structures, respectively. Annealing of these clusters leads them to transform into lower free energy, but still highly symmetric forms, sometimes accompanied by the ejection of particles. The interactions between such clusters in principle could be further reprogrammed to allow hierarchical assembly processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.