Abstract

Colloidal quantum dots (QDs) as photocatalysts enable catalysis of CO2-to-CO conversion in the presence of electron donors. The surface and/or interfacial chemical environment of the QDs is essential for the activity and selectivity of the CO2 photoreduction. Various strategies, including exposing active metal sites or anchoring functional organic ligands, have been applied to tune the QDs' surface chemical environment and thus to improve both activity and selectivity of CO2 photoreduction, which occurs at surface of the QDs. However, the efficient and selective photocatalytic CO2 reduction with QD photocatalysts in water is still a challenging task due to low CO2 solubility and robust competing reaction of proton reduction in water. Different from state-of-the-art QDs' surface manipulation, we proposed to ameliorate the interfacial chemical environment of CdSe QDs via assembling the QDs into functional polymeric micelles in water. Herein, CdSe@PEI-LA assemblies were constructed by loading CdSe QDs into polymeric micelles formed by PEI-LA, a polyethylenimine (PEI)-based functional amphiphilic polymer. Due to self-assembly and high CO2 adsorption capacity of PEI-LA in water, the photocatalytic CO2-to-CO conversion efficiency and selectivity of the CdSe@PEI-LA assemblies in water were dramatically improved to 28.0 mmol g-1 and 87.5%, respectively. These two values increased 57 times and 1.5 times, respectively, compared with those of the pristine CdSe QDs. Mechanism studies revealed that CdSe QDs locate in polymeric micelles of high CO2 local concentration and the photoinduced electron transfer from the conduction band of CdSe QDs to Cd-CO2* species is thermodynamically and kinetically improved in the presence of PEI-LA. The CdSe@PEI-LA system represents a successful example of using a functionalized amphiphilic polymer to ameliorate interfacial microenvironments of nanocrystal photocatalysts and realizing efficient and selective CO2 photoreduction in water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.