Abstract

Self-assembling of sulfuric-acid-hydrolyzed cellulose nanocrystals (CNCs, 6.4 nm wide) and TEMPO oxidized cellulose nanofibrils (CNFs, 2.1 nm wide) from aqueous suspensions was induced by rapid freezing (-196 °C, 10 min) and slow lyophilization (-50 °C, 0.05 mbar, 2 days). The assembled structures contain submicron (200-700 nm) wide and tens of micrometer long fibers at up to 0.1-0.5% and 0.01-0.05%, the critical fiber-to-film transformation concentrations for CNCs and CNFs, respectively. The assembled fiber widths were significantly reduced to ∼40 nm, that is, by 1 order of magnitude, when 10% of the aqueous media was replaced with tert-butanol. Further increasing tert-butanol contents in the media to 93/7 (CNCs) and 50/50 (CNFs) tert-butanol/water, both at 0.1% nanocellulose concentration, reduced longitudinal assembling for CNCs and lateral assembling for CNFs as well as increased critical fiber-to-film transformation concentration for CNFs. While all assembled structure could be redispersed in water, those from tert-butanol/water could also be easily redispersed in DMF aided with brief 2 min ultrasonication. None of the assembled structures could be redispersed in the lower dielectric constant ethanol, acetone or chloroform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.