Abstract

Achieving efficient and stable photocatalytic degradation of xylene hinges on the advancement of photocatalytic materials with outstanding visible light activity. This low-carbon strategy serves as a promising solution to combat air pollution effectively. In this study, we synthesized a Z-scheme heterojunction Ag@CuO/UiO-66-NH2 nanocomposite by hydrothermal method to investigate its photodegradation properties for xylene gas under visible light conditions. XRD, XPS, SEM, FTIR, and UV-vis analyses were employed to confirm the presence of the Z-scheme heterojunction. The CuO/UiO-66-NH2 (CuU-2) composite has high photocatalytic activity, which is 2.37 times that of the original UiO-66-NH2. The incorporation of Z-scheme heterojunction facilitates efficient charge transfer and separation, leading to a substantial enhancement in photocatalytic activity. The Ag@CuO/UiO-66-NH2 (Ag-1@CuU) composite has the highest photocatalytic activity with a degradation efficiency of 84.12%, which is 3.36 times and 1.41 times that of UiO-66-NH2 and CuO/UiO-66-NH2, respectively. The silver cocatalyst improves the absorption capacity of the composite material to visible light, makes the ultraviolet visible absorption edge redshift, and significantly improves the photocatalytic performance. This study introduces a novel approach for xylene gas degradation and offers a versatile strategy for designing and synthesizing metal-organic framework (MOF)-based photocatalysts with exceptional performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.