Abstract

BackgroundMany microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. Thus, attempts have been made to transform such enzymes into fermentative microbes to serve as hosts for ethanol production. However, an efficient host for a consolidated bioprocess (CBP) remains to be found. For this purpose, a synthetic biology technique that can transform multiple genes into a genome is instrumental. Moreover, a strategy to select cellulases that interact synergistically is needed.ResultsTo engineer a yeast for CBP bio-ethanol production, a synthetic biology technique, called “promoter-based gene assembly and simultaneous overexpression” (PGASO), that can simultaneously transform and express multiple genes in a kefir yeast, Kluyveromyces marxianus KY3, was recently developed. To formulate an efficient cellulase cocktail, a filter-paper-activity assay for selecting heterologous cellulolytic enzymes was established in this study and used to select five cellulase genes, including two cellobiohydrolases, two endo-β-1,4-glucanases and one beta-glucosidase genes from different fungi. In addition, a fungal cellodextrin transporter gene was chosen to transport cellodextrin into the cytoplasm. These six genes plus a selection marker gene were one-step assembled into the KY3 genome using PGASO. Our experimental data showed that the recombinant strain KR7 could express the five heterologous cellulase genes and that KR7 could convert crystalline cellulose into ethanol.ConclusionSeven heterologous genes, including five cellulases, a cellodextrin transporter and a selection marker, were simultaneously transformed into the KY3 genome to derive a new strain, KR7, which could directly convert cellulose to ethanol. The present study demonstrates the potential of our strategy of combining a cocktail formulation protocol and a synthetic biology technique to develop a designer yeast host.

Highlights

  • Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol

  • An enzyme cocktail formulation assay for selecting synergistic enzymes In our previous study, we have engineered a recombinant K. marxianus KY3 strain, called KR5, that possesses the cbhI, egIII, and npabgs genes and can secrete the CBH, EG and BGL enzymes simultaneously [24]

  • KR5 can grow on media with cellodextrins, such as cellobiose and beta-glycan, it does not have the ability to utilize more complex cellulose substrates, such as filter paper and avicel

Read more

Summary

Introduction

Many microorganisms possess enzymes that can efficiently degrade lignocellulosic materials, but do not have the capability to produce a large amount of ethanol. The model cellulolytic Neurospora crassa has seven major facilitator superfamily (MFS) sugar transporters, and the cellodextrin transportors (CDT-1 and CDT-2) have been shown to facilitate transport of cellobiose, cellotriose, and cellotetraose into the cytoplasm [12,13] These cellulolytic consumers are not suitable for the fermentation industry, because of a low growth rate, the requirement of a specific culture medium, the requirement of a special inducing condition, or the inability to produce a serviceable biofuel product [14]. These cellulolytic enzyme systems may be used to engineer a yeast host for the cellulosic ethanol industry

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call