Abstract

Great success has been achieved in recent years in the development of synthetic or assembled nanobiomaterials. Among these, biomolecule-based nanoarchitectures with special optical property are of particular interest. Here, we demonstrate that vitamin B2 nanocrystals assembled as nanorods can be obtained with precise control. Excitingly, such one-dimensional nanostructures not only exhibit intrinsic optical waveguiding properties but also the ability to sensitize oxygen to produce reactive oxygen species. With these properties, we applied the obtained vitamin B2 nanorods under remotely localized light illumination into single tumour cells in vitro for anticancer photodynamic therapy. Further, vitamin B2 nanorods were explored for in vivo photodynamic therapy by using a tumour model. With such bionanostructures, new features and functions of vitamin B2 and its derivatives have been developed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call