Abstract

Paired helical filaments (PHF) are abnormal, approximately 20–25-nm wide periodically twisted filaments, which accumulate in Alzheimer's disease (AD) brain and other neurodegenerative disorders, including corticobasal degeneration (CBD). PHF are primarily composed of highly phosphorylated tau protein. However, both phosphorylated and non-phosphorylated forms of tau are able to assemble in vitro into filaments similar in the ultrastructural appearance to PHF. In the present study, filaments were assembled in vitro from unmodified recombinant human tau and the physical mass per unit length of filaments and the mass density were determined using scanning transmission electron microscopy (STEM). Two general types of filaments were observed. One type was composed of 11.4 nm-wide, 10–75 nm long, frequently twisted and PHF-like filaments, with a mass per unit length (44 kDa/nm) approximately one third of that observed in isolated AD filaments. The other were straight filaments, approximately 6.8-nm wide and 0.2–2 μm long, which often formed parallel clusters of two or more filaments. Triple clusters were 19.2-nm wide and had a mass per unit length (70 kDa/nm) approximately two thirds of that seen in isolated AD filaments. Despite different morphology, both twisted and straight filaments had mass densities between 0.48–0.55 kDa/nm 3. These values are significantly higher than those reported for PHF found either in AD (0.40 kDa/nm 3) or CBD (0.33 kDa/nm 3). These results suggest that the packing of tau differs in vivo from that observed in vitro and that specific tau isoform content, elongation of tau molecules by phosphorylation or other factors may be required to reproduce pathological assembly. Therefore mass density determinations appear to be an important criterion in comparing various filaments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.