Abstract

Directed nanocrystal (NC) heteroassemblies could potentially achieve tailorable multiplex circular dichroism (CD) bands. Here, for the first time, we developed assembly of nanoparticle (NP)-nanorod (NR) chiral heterodimers with chiral molecules to explore their chiroptical activities. The experimental results revealed that plasmonic CD responses were in the region from 520 to 750 nm, which was in agreement with the theoretical simulation. Importantly, the CD band could be regulated by controlling the gaps between adjacent NCs and altering the building blocks of the assemblies. These results show that the plasmonic chiroptical response of NP-NR heterodimers could come from the finger-crossed chiral construction of adjacent NC in the heterodimers and the formation of plasmonic hot-spots in the assemblies could further enhance the plasmonic CD. This work provides a new opportunity to create heterogeneous nanoscale plasmonic objects with tailorable chiroptical response for application in biosensors, in vivo chiral medical carriers and negative refractive index materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.