Abstract

SV40 assembles in the nucleus by addition of capsid proteins to the minichromosome. The VP1 5VP2/3 capsomer is composed of a pentamer of the major protein VP1 complexed with a monomer of a minor protein, VP2 or VP3. In the capsid, the capsomers are bound together via their flexible carboxy-terminal arms. Our previous studies suggested that the capsomers are recruited to the packaging signal ses via avid interaction with Sp1. During assembly Sp1 is displaced, allowing chromatin compaction. Here we investigated the interactions in vitro of VP1 5VP2/3 capsomers with the entire SV40 genome, using mutant VP1 deleted in the carboxy-arm that cannot assemble, but retains DNA-binding capacity. EM revealed that VP1 5VP2/3 complexes bind non-specifically at random locations around the DNA. Sp1 was absent from mature virions. The findings suggest that multiple capsomers attach simultaneously to the viral genome, increasing their local concentration, facilitating rapid, concerted assembly reaction and removal of Sp1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.