Abstract

Binding of fluorescent ligands (tracers) to their target receptors can be directly monitored over time, as the binding of a low-molecular-weight (LMW) tracer to a larger particle causes an increase of fluorescence anisotropy (FA). The combination of bright fluorophores, tracers with low nonspecific binding, and budded baculovirus particles (BVPs) for overexpression of G protein-coupled receptors (GPCRs) ensures a high signal-to-noise ratio in FA assays. The obtained data enable quantitative assessment of equilibrium binding and kinetic parameters for both the tracer and competing compounds as well as an estimation of the receptor concentration. FA assays have clear potential for implementation in drug screening systems, but also in studies of ligand-binding mechanisms for particular GPCRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.