Abstract

We report the development and demonstration of an assay that distinguishes the pharmacological effects of two widely used antiplatelet therapies, aspirin (COX-1 inhibitor) and clopidogrel (P2Y12 inhibitor). Whole blood is perfused through a low-volume microfluidic device in contact with a well-characterized (ellipsometry, atomic force microscopy) acid-soluble type I collagen surface. Whole human blood treated in vitro with a P2Y12 inhibitor 2-methylthioadenosine 5'-monophosphate triethylammonium salt (2-MeSAMP) extended the time to the start of platelet recruitment, i.e., platelet binding to the collagen surface. Treatment with 2-MeSAMP also slowed the rate of aggregate buildup, with an overall reduced average platelet aggregate area after 8 min of constant blood flow. A far smaller effect was observed for in vitro treatment with aspirin, for which the rate of change of surface coverage is indistinguishable from controls. In whole blood obtained from patients under treatment with dual-antiplatelet therapy (aspirin and clopidogrel), a significant extension of time to platelet recruitment was observed along with a slowed rate of aggregate buildup and an average aggregate size approximately half that of control measurements. Differentiation of the pharmacological effects of these two well-targeted antiplatelet pathways suggests a role for this assay in determining the antiplatelet effects of these and related new therapeutics in clinical settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call