Abstract
Mitochondrial respiration is an essential component of cellular metabolism. It is a process of energy conversion through enzymatically mediated reactions, the energy of taken-up substrates transformed to the ATP production. Seahorse equipment allows to measure oxygen consumption in living cells and estimate key parameters of mitochondrial respiration in real-time mode. Four key mitochondrial respiration parameters could be measured: basal respiration, ATP-production coupled respiration, maximal respiration, and proton leak. This approach demands the application of mitochondrial inhibitors-oligomycin to inhibit ATP synthase, FCCP-to uncouple the inner mitochondrial membrane and allow maximum electron flux through the electron transport chain, rotenone, and antimycin A to inhibit complexes I and III, respectively. This chapter describes two protocols of seahorse measurements performed on iPSC-derived cardiomyocytes and TAZ knock-out C2C12 cell line.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.