Abstract

Cis-regulatory elements (CREs) are non-coding DNA regions involved in the spatio-temporal regulation of gene expression. Gene regulatory changes drive animal development and play major roles during evolution of animal body plans. Therefore, we believe that determining CREs at different developmental stages and across animal lineages is critical to understand how evolution operates through development. The Assay for Transposase-Accessible Chromatin followed by high-throughput sequencing (ATAC-seq) is a powerful technique for the study of CREs that takes advantage of Tn5 transposase activity. Starting from fewer than 105 cells, in a 1-day procedure, it is possible to detect, at a genome-wide level, CREs located in open chromatin regions with high resolution. Here, we describe a detailed step-by-step ATAC-seq protocol for invertebrate chordate marine embryos. We have successfully applied this technique to amphioxus and two species of tunicate embryos. We also show an easy workflow to analyze data generated with this technique. Moreover, we point out that this method and our bioinformatic pipeline are efficient to detect CREs associated with Wnt signaling pathway by simply using embryos treated with a drug that perturbs this pathway. This approach can be extended to other signaling pathways and also to embryo mutants for critical genes. Our results therefore demonstrate the power of ATAC-seq for the identification of CREs that play essential functions during animal development in a wide range of invertebrate or vertebrate animals.

Highlights

  • During embryonic development, cellular cross-talks must be tightly coordinated to allow the proper formation of the different tissues in the developing organism

  • ATAC-seq assays have been performed in wt embryos of amphioxus and tunicates at different developmental stages mentioned in Tables 2, 3, respectively

  • We provide an example of using ATAC-seq for the identification of Cis-regulatory elements (CREs) controlled by the Wnt signaling pathway

Read more

Summary

Introduction

Cellular cross-talks must be tightly coordinated to allow the proper formation of the different tissues in the developing organism. These cross-talks are mediated by a limited number of pleiotropic signaling pathways that precisely control gene expression. Developmental genes are among the main targets of these signaling pathways. The expression of these genes is precisely regulated in space and time by the combined action of different pathways. How developmental genes integrate these multiple inputs is largely unexplored

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call