Abstract

Combinatorial chemistry has opened a new realm of chemical entities in the search for novel therapeutics. Combinatorial chemistry is currently adding hundreds of thousands of compounds to similar numbers available from years of synthesis by medicinal chemistry. It is not unreasonable to expect that over the next several years, nearly a million compounds will be available for screening against each therapeutic target. The number of potential targets will also be increasing with the advances in genomics. With the increasing number of compounds to be screened against an increasing number of targets, it is becoming increasingly difficult and costly to obtain the required amounts of key biological material needed to screen these compounds. One obvious solution is to miniaturize the assays so that the biological reagent supply doesn't need to increase. To this end, we have developed an ultra-high throughput screening system comprised of a new plate design (9600-well), detection system, and liquid handling system. This new format is capable of performing assays in as little as 0.2 Al. The results obtained from this system compare favorably to those obtained in the standard 96-well format.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.