Abstract

BackgroundAbiotic stresses pose serious threat to the growth and yield of crop plants. Several studies suggest that in plants, transcription factors (TFs) are important regulators of gene expression, especially when it comes to coping with abiotic stresses. Therefore, it is crucial to identify TFs associated with abiotic stress response for breeding of abiotic stress tolerant crop cultivars. MethodsBased on a machine learning framework, a computational model was envisaged to predict TFs associated with abiotic stress response in plants. To numerically encode TF sequences, four distinct sequence derived features were generated. The prediction was performed using ten shallow learning and four deep learning algorithms. For prediction using more pertinent and informative features, feature selection techniques were also employed. ResultsUsing the features chosen by the light-gradient boosting machine-variable importance measure (LGBM-VIM), the LGBM achieved the highest cross-validation performance metrics (accuracy: 86.81%, auROC: 92.98%, and auPRC: 94.03%). Further evaluation of the proposed model (LGBM prediction method + LGBM-VIM selected features) was also done using an independent test dataset, where the accuracy, auROC and auPRC were observed 81.98%, 90.65% and 91.30%, respectively. ConclusionsTo facilitate the adoption of the proposed strategy by users, the approach was implemented as a prediction server called ASPTF, accessible at https://iasri-sg.icar.gov.in/asptf/. The developed approach and the corresponding web application are anticipated to supplement experimental methods in the identification of transcription factors (TFs) responsive to abiotic stress in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.