Abstract
The growth and developmental rate of developing embryos and fetus are tightly controlled and coordinated to maintain proper body shape and size. The insulin receptor substrate (IRS) proteins, key intracellular transducers of insulin and insulin-like growth factor signaling, play essential roles in the regulation of growth and development. A short isoform of apoptosis-stimulating protein of p53 2 (ASPP2) was recently identified as a binding partner of IRS-1 and IRS-2 in mammalian cells in vitro. However, it is unclear whether ASPP2 plays any role in vertebrate embryonic growth and development. Here, we show that zebrafish Aspp2a and Aspp2b negatively regulate embryonic growth without affecting developmental rate. Human ASPP2 had similar effects on body growth in zebrafish embryos. Aspp2a and 2b inhibit Akt signaling. This inhibition was reversed by coinjection of myr-Akt1, a constitutively active form of Akt1. Zebrafish Aspp2a and Aspp2b physically bound with Irs-1, and the growth inhibitory effects of ASPP2/Aspp2 depend on the presence of their ankyrin repeats and SH3 domains. These findings uncover a novel role of Aspp2 in regulating vertebrate embryonic growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.