Abstract

Worldwide, calcific aortic valve disease is one of the leading causes of morbidity and mortality among patients with cardiac abnormalities. Aortic valve mineralization and calcification are the key events of adult calcific aortic valve disease manifestation and functional insufficiency. Due to heavy mineralization and calcification, adult aortic valvular cusps show disorganized and dispersed stratification concomitant with deposition of calcific nodules with severely compromised adult valve function. Interestingly, shared gene regulatory pathways are identified between bone-forming cells and heart valve cells during development. Asporin, a small leucine-rich proteoglycan (43 kDa), acts to inhibit mineralization in periodontal ligament cells and is also detected in normal murine adult aortic valve leaflets with unknown function. Therefore, to understand the Asporin function in aortic cusp mineralization and calcification, adult avian aortic valvular interstitial cell culture system is established and osteogenesis has been induced in these cells successfully. Upon induction of osteogenesis, reduced expression of Asporin mRNA and increased expression of bone and osteogenesis markers are detected compared to cells maintained without osteogenic induction. Importantly, treatment with human recombinant Asporin protein reduces the mineralization level in osteogenic media-induced aortic valvular interstitial cells with the concomitant decreased level of Wnt/β-catenin signaling. Overall, all these data are highly indicative that Asporin might be a novel biomolecular target to treat patients of calcific aortic valve disease over current cusp replacement surgery.

Highlights

  • Cardiac diseases are often associated with structural and functional insufficiency of adult aortic valvular cusps [1, 2]

  • Several previous reports have identified that the cultured aortic valvular interstitial cells (AVICs) undergo osteoblast differentiation resulting in AVICs mineralization and subsequent calcification [3, 7, 23]

  • AVICs have been isolated from dissected aortic tri-cusps and cultured

Read more

Summary

Introduction

Cardiac diseases are often associated with structural and functional insufficiency of adult aortic valvular cusps [1, 2]. These are mostly characterized by aortic valve mineralization, followed by calcification and subsequent dysfunction with severe morbidity and mortality in humans [3, 4]. According to World Health Organization, it is estimated that 17.9 million people (31%) died from different cardiovascular diseases in the year 2017. Prevalence of calcific aortic valve disease (CAVD) accounts for around 5-25% of all types of cardiovascular diseases. CAVD is projecting around 13% of global population and persisting as a serious health concern, worldwide

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.