Abstract

We report the results of the first infrared survey of novae in the nearby spiral galaxy, M31. Both photometric and spectroscopic observations of a sample of 10 novae (M31N 2006-09c, 2006-10a, 2006-10b, 2006-11a, 2007-07f, 2007-08a, 2007-08d, 2007-10a, 2007-11d, and 2007-11e) were obtained with the Spitzer Space Telescope. Eight of the novae were observed with the IRAC (all but M31N 2007-11d and 2007-11e) and eight with the IRS (all but 2007-07f and 2007-08a), resulting in six in common between the two instruments. The observations, which were obtained between ~3 and ~7 months after discovery, revealed evidence for dust formation in two of the novae: M31N 2006-10a and (possibly) 2007-07f, and [Ne II] 12.8 micron line emission in a third (2007-11e). The Spitzer observations were supplemented with ground-based optical photometric and spectroscopic data that were used to determine the speed classes and spectroscopic types of the novae in our survey. After including data for dust-forming Galactic novae, we show that dust formation timescales are correlated with nova speed class in that dust typically forms earlier in faster novae. We conclude that our failure to detect the signature of dust formation in most of our M31 sample is likely a result of the relatively long delay between nova eruption and our Spitzer observations. Indeed, the two novae for which we found evidence of dust formation were the two "slowest" novae in our sample. Finally, as expected, we found that the majority of the novae in our sample belong to the Fe II spectroscopic class, with only one clear example of the He/N class (M31N 2006-10b). Typical of an He/N system, M31N 2006-10b was the fastest nova in our sample, not detected with the IRS, and just barely detected in three of the IRAC bands when it was observed ~4 months after eruption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call