Abstract
One clinical intervention against the negative outcomes associated with atherothrombotic vascular disease (AVD) is low-dose, chronic aspirin therapy. However, epidemiological studies suggest that recurrence of adverse vascular events with aspirin therapy is growing and associated with therapy duration. The contributors to this outcome are unclear and include poor patient compliance and aspirin-resistant platelet thromboxane A(2) (TxA(2)) production. Based on previous results in hypercholesterolemic mice, we hypothesized that elevated aspirin-insensitive arachidonic acid (AA)-induced TxA(2) production by the vascular endothelium contributes to aspirin resistance in AVD independent of platelet behavior. AA-induced dilation was blunted in aortic rings and in arterioles from apolipoprotein E (ApoE) and low-density lipoprotein receptor (LDLR) gene deletion mice (vs. C57/Bl6/J), partially due to elevated TxA(2) production. Acute inhibition of cyclooxygenases or TxA(2) synthase attenuated the increased TxA(2) production in ApoE and LDLR and improved AA-induced dilation, responses that were mirrored by chronic treatment with low-dose aspirin of 16 wk duration. However, this effect was not temporally stable, and, with longer-duration therapy, the beneficial impact of aspirin on outcomes diminished. A similar, though less robust, pattern to the impact of chronic aspirin therapy on vascular outcomes was identified with chronic antioxidant treatment (TEMPOL). These results suggest that in dyslipidemic mice, the beneficial impact of chronic aspirin therapy on improving vascular outcomes decay with time and that a contributing element to subsequent negative vascular events may be the development of aspirin-resistant TxA(2) production by the vasculature itself.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.