Abstract
Acetylsalicylic acid (aspirin) is one of the most widely used drugs worldwide, due mainly to its broad therapeutic spectrum with anti-inflammatory, antipyretic, antithrombotic and analgesic effects. However, the exact mechanisms by which aspirin influences inflammation, pain and immune system activation are only partly understood. Within activation of the cellular immune system, Th1-type cytokine interferon (IFN)-gamma induces enzyme indoleamine-2,3-dioxygenase (IDO) which converts tryptophan to kynurenine. In parallel, IFN-gamma induces enzyme GTP-cyclohydrolase I, which gives rise to neopterin production by activated human macrophages. Similarly, tryptophan degradation and neopterin formation increase during several disease states involving Th1-type immune activation. Using stimulated human peripheral blood mononuclear cells (PBMC), the effect of aspirin on tryptophan degradation and neopterin production was investigated. Stimulation of PBMC with mitogens concanavalin A, phytohaemagglutinin and pokeweed mitogen induced significant tryptophan catabolism as was reflected by a decline in tryptophan levels and a parallel increase in kynurenine concentrations compared with unstimulated cells. In parallel, neopterin production was enhanced. Treatment of stimulated PBMC with increasing doses of 1-5 mM aspirin significantly decreased stimulation-induced tryptophan degradation and neopterin production as well. All the effects of aspirin were dose-dependent. The parallel influence of aspirin on both biochemical pathways implies that there was no direct inhibitory effect of aspirin on IDO; rather, it inhibits production of IFN-gamma in mitogen-treated PBMC. The influence of aspirin on biochemical pathways induced by IFN-gamma may represent an important part of its broad pharmacological effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.