Abstract

Scorpions of the genus Tityus are responsible for the majority of envenomation in Brazil, the Tityus serrulatus species being the most common and dangerous in South America. In this approach, we have investigated the ability of the aqueous extract from the leaves of Aspidosperma pyrifolium in reducing carrageenan-induced inflammation and the inflammation induced by T. serrulatus envenomation in mice. We also evaluated the cytotoxic effects of this extract, using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-2H-tetrazolium (MTT) assay and the results revealed that the extract is safe. Analysis by High Performance Liquid Chromatography coupled with Diode Array Detector (HPLC-DAD) and Liquid Chromatography Coupled with Mass Spectrometry with Diode Array Detection (LC-DAD-MS) showed one major chemical component, the flavonoid rutin and phenolics compounds. For in vivo studies in carrageenan-induced peritonitis model, mice received extracts, dexamethasone, rutin or saline, before administration of carrageenan. For venom-induced inflammation model, animals received T. serrulatus venom and were, simultaneously, treated with extracts, antivenom, rutin or saline. The extract and rutin showed a reduction in the cell migration into the peritoneal cavity, and in the same way the envenomated animals also showed reduction of edema, inflammatory cell infiltration and vasodilation in lungs. This is an original study revealing the potential action of A. pyrifolium against inflammation caused by Tityus serrulatus venom and carrageenan, revealing that this extract and its bioactive molecules, specifically rutin, may present potential anti-inflammatory application.

Highlights

  • The scorpion genus Tityus is responsible for the majority of scorpion envenomation in Brazil, and, in particular, the species Tityus serrulatus (Buthidae) is the most common and harmful

  • The presence of the flavonoid rutin was confirmed by HPLC-DAD analysis (Figure 1, peak 9) by comparison of the retention time of 41.18 min, UV spectra (256 and 353 nm) and by increasing the area under the peak observed by co-injection of extract and reference standard

  • The difference in the mean values of *** p < 0.001, ** p < 0.01 and * p < 0.05 were considered as statistically significant. This approach demonstrated that aqueous extracts of A. pyrifolium can counteract the inflammatory effects induced by T. serrulatus scorpion venom in mice

Read more

Summary

Introduction

The scorpion genus Tityus is responsible for the majority of scorpion envenomation in Brazil, and, in particular, the species Tityus serrulatus (Buthidae) is the most common and harmful. T. serrulatus venom (VTs) causes pulmonary edema, resulting in an increase in lung permeability by vasoactive substances released by the inflammatory process The pathogenesis of this edema is very complex, envenomation by this species can be severe, and deaths are often caused by acute pulmonary edema [5,6]. Others symptoms displayed by victims of scorpion accidents are fever, restlessness, excessive salivation, lacrimation, increased gastrointestinal motility, respiratory, cardiac arrhythmias, acute pulmonary inflammation, hypertension followed by hypotension, heart failure, and cardiogenic shock. In part, these clinical manifestations may be observed by the presence of neurotoxic components in the venom which interact with sodium and potassium channels in nerve endings [7,8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call