Abstract
ABSTRACT Ultralight dark matter (ULDM) is an interesting alternative to the cold dark matter (CDM) paradigm. Due to the extremely low mass of the constituent particle (∼10−22 eV), ULDM can exhibit quantum effects up to kiloparsec scales. In particular, runaway collapse in the centres of ULDM haloes is prevented by quantum pressure, providing a possible resolution to the ‘core-cusp problem’ of CDM. However, the the detailed relationship between the ULDM core mass and that of the overall halo is poorly understood. We simulate the collapse of both spherical and aspherical isolated ULDM overdensities using AxioNyx, finding that the central cores of collapsed haloes undergo sustained oscillatory behaviour, which affects both their peak density and overall morphology. The asphericity of the post-collapse core fluctuates both quantitatively and qualitatively, with oblate initial overdensities generating cores, which fluctuate between prolate and oblate configurations, and more complicated dynamics arising in triaxial scenarios. Furthermore, the peak central densities are higher in spherical configurations. Consequently, astrophysically realistic haloes may exhibit substantial departures from theoretical core–halo profiles and we would expect a significant variance of the properties of haloes with the same mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.