Abstract

The problem of nucleosynthesis was studied within an aspherical supernova model. The explosive burning was computed in a star of 25 M ☉ initial mass on its final stage of evolution. The chemical composition of a presupernova was taken from realistic evolutionary computations. A piecewise parabolic method on a local stencil was applied to simulate the hydrodynamics of the explosion. The gravity was recomputed by a Poisson solver on a fine grid as the explosion developed. A detailed yield of chemical elements was performed as a post-processing step using the tracer particles method. The produced nuclei formed a layer-like structure enclosing large fragments of nickel and iron-group isotopes that were pushed away from the central region by an explosion along the polar direction. The light nuclei were preferentially moving along the equatorial plane forming a torus-like structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.