Abstract
We survey recent developments which led to the proof of the Benson-Gordon conjecture on Kähler quotients of solvable Lie groups. In addition, we prove that the Albanese morphism of a Kähler manifold which is a homotopy torus is a biholomorphic map. The latter result then implies the classification of compact aspherical Kähler manifolds with (virtually) solvable fundamental group up to biholomorphic equivalence. They are all biholomorphic to complex manifolds which are obtained as a quotient of $$\mathbb{C}^{n}$$ by a discrete group of complex isometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.