Abstract

Asphaltene nanoaggregates have recently been observed in live crude oil by observation of gravitationally induced asphaltene gradients in four different reservoir sands with oil columns up to 1000 m vertical. When the liquid phase is invariant, these gradients can be fit using Archimedes buoyancy in the Boltzmann distribution; the only adjustable parameter in data fitting is the size of the asphaltene nanoaggregate; ∼2 nm is obtained in four reservoir sands and is similar to laboratory results for asphaltene nanoaggregates in toluene. Here, a live crude oil (with dissolved gases) has been spun at modest g forces for long times designed to create a large, equilibrium asphaltene gradient for the presumed 2 nm aggregates. Elevated temperatures (∼91 °C) were employed during centrifugation to mimic reservoir conditions for asphaltene aggregation and prevention of a possible wax phase. Elevated pressures were employed on the hot, live crude oil to maintain dissolved gas concentrations. A total of 13 alliquots o...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call