Abstract

Presence of suspended particles such as asphaltene in crude oils could significantly affect the production by means of deposition in porous media especially near the well bore. We investigate this phenomenon using the ability of Small Angle Neutron Scattering technique to probe directly the asphaltene adsorption process in a porous medium at the nanometer length scale under flow conditions. A device based on a quartz tube filled with SiC particles constitute the porous medium in which an asphaltene solution in a mixture of good (toluene)/bad (heptane) solvent is injected under controlled flow. The contrast matching technique enables to match the porous medium scattering contributions and to measure the signal of the deposit. Such a device can be used for curves surface measurements on a setup originally designed for bulk studies and permit thus the direct comparison with measurements on flat surfaces (neutron reflectivity) and indirect adsorption measurements (adsorption isotherm). We show here that asphaltene in good solvent leads to a monolayer whereas addition of bad solvent results in a multilayer growth which is consistent with the deposition behaviour described in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call