Abstract

We present here a study of the adsorption of asphaltenes on hydrophilic and hydrophobic solid surfaces by coupling measurements of adsorption isotherms on the macroscopic scale on silica powder with measurements of the structure of the adsorbed asphaltene layer on the microscopic scale obtained by neutron reflectivity on flat silicon wafers. Under good-solvent conditions, if adsorption isotherms reveal that the interaction potential between asphaltenes and the surface is slightly higher for the hydrophilic surface than for the hydrophobic one, then the mechanism of adsorption is similar in both cases because all samples exhibit the same local structure of the adsorbed asphaltene layer: it is a solvated monolayer with thickness of the same order of magnitude as the size of the asphaltene aggregates in the bulk. The surface excess, gamma, is thus always of the same order (approximately 3 mg/m2). The adsorption process induces a densification of the aggregates at the interface because the adsorbed monolayer is much less solvated than aggregates in bulk solution. When a bad solvent is progressively added, the asphaltene adsorbed layer keeps its monolayer structure as long as the bulk flocculation threshold is not reached. Above the threshold, the size of the asphaltene adsorbed layer grows and forms a multilayer structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call