Abstract
ABSTRACT Paris’ power law is commonly used to describe transverse thermal cracking propagation in asphalt concrete (AC) pavements. In its most common format, it relates the rate of change in the crack length per cycle to changes in either the stress intensity factor K or the energy release. The parameters defining this relationship for ACs can be obtained using the Texas cyclic Overlay Test (OTR). This paper describes two numerical approaches for simulating the OTR using the extended finite element method (XFEM). The first uses the direct low-cyclic fatigue (LCF) approach and the second uses the virtual crack closure technique (VCCT). Comparisons of the model predictions to laboratory OTR measurements for six mixtures suggest that the XFEM model coupled with VCCT is better suited for simulating the OTR. The model output includes the crack length and the energy release rate ERR (i.e. Δ J R ) as cracks propagate. This data was used to fit the modified Paris’ law parameters A ′ and n ′ as a function Δ J R . Subsequently, the traditional A and n Paris’ power law parameters were fitted by estimating the corresponding ΔK. Using this model, it was possible to efficiently estimate the AC cracking parameters using as input only the tensile modulus and the critical ERR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.