Abstract

Ethnopharmacological relevanceStudies have found that the causes of male infertility are complex, and spermatogenic dysfunction accounts for 30%–65% of male infertility causes, which is the main cause of male infertility. Asperosaponin VI (ASVI) is a saponin extracted from the traditional Chinese herb Dipsacus asperoides C.Y.Cheng & T.M.Ai. However, the precise protective impact and underlying mechanism of ASVI in the therapy of spermatogenic dysfunction remain unknown. Aim of the studyTo investigate the impact of ASVI on the spermatogenic dysfunction induced by cytoxan (CTX) in mice, as well as explore any potential mechanisms. Materials and methodsPotential ASVI targets were screened using the Pharmapper and Uniprot databases, while genes related to spermatogenic dysfunction were collected from the GeneCards database. The String and Cytoscape databases were then used for PPI analysis for the common targets of ASVI and spermatogenic dysfunction. Meanwhile, the Metascape database was used for KEGG and GO analysis. In vivo experiments, spermatogenic dysfunction was induced in male mice by intraperitoneal administration of CTX (80 mg/kg). To demonstrate the possible protective effects of ASVI on reproductive organs, CTX-induced spermatogenic dysfunction mice with different dosages of ASVI (0.8, 4, 20 mg/kg per day) treatment were collected and gonad weight was detected. The testis and epididymis were detected again by H&E. To assess the impact of ASVI on fertility in male mice, we analyzed sperm quality, serum hormones, sexual behavior, and fertility. The mechanism was investigated using WB, IF, IHC, and Co-IP technology. ResultsThe ASVI exhibited interactions with 239 associated targets. Furthermore, 1555 targets associated with spermatogenic dysfunction were predicted, and further PPI analysis identified 6 key targets. Among them, the EGFR gene exhibited the highest degree of connection and was at the core of the network. Based on the GO and KEGG enrichment analysis, ASVI may affect spermatogenic dysfunction through the EGFR pathway. In vivo experiments, ASVI significantly improved CTX-induced damage to male fertility and reproductive organs, increasing sperm quality. At the same time, ASVI can resist CTX-induced testicular cell damage by increasing p-EGFR, p-ERK, PCNA, and p-Rb in the testis and by promoting the interaction of CyclinD1 with CDK4. In addition, ASVI can also regulate sex hormone disorders and protect male fertility. ConclusionsASVI improves CTX-induced spermatogenesis dysfunction by activating the EGFR signaling pathway and regulating sex hormone homeostasis, which may be a new potential protective agent for male spermatogenic dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call