Abstract

Aspergillus oryzae β-D-galactosidase (β-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, β-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, β-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-β-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of β-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-β-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-β-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-β-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-β-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-β-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.