Abstract

BackgroundThe novel coronavirus disease of 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Data from the COVID-19 clinical control case studies showed that this disease could also manifest in patients with underlying microbial infections such as aspergillosis. The current study aimed to determine if the Aspergillus (A.) fumigatus culture media (i.e., supernatant) possessed protease activity that was sufficient to activate the SARS-CoV-2 spike protein.MethodsThe supernatant was first analysed for protease activity. Thereafter, it was assessed to determine if it possessed proteolytic activity to cleave a fluorogenic mimetic peptide of the SARS-CoV-2 spike protein that contained the S1/S2 site and a full-length spike protein contained in a SARS-CoV-2 pseudovirion. To complement this, a computer-based tool, HADDOCK, was used to predict if A. fumigatus alkaline protease 1 could bind to the SARS-CoV-2 spike protein.ResultsWe show that the supernatant possessed proteolytic activity, and analyses of the molecular docking parameters revealed that A. fumigatus alkaline protease 1 could bind to the spike protein. To confirm the in silico data, it was imperative to provide experimental evidence for enzymatic activity. Here, it was noted that the A. fumigatus supernatant cleaved the mimetic peptide as well as transduced the HEK-293T cells with SARS-CoV-2 pseudovirions.ConclusionThese results suggest that A. fumigatus secretes a protease(s) that activates the SARS-CoV-2 spike protein. Importantly, should these two infectious agents co-occur, there is the potential for A. fumigatus to activate the SARS-CoV-2 spike protein, thus aggravating COVID-19 development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call