Abstract
The effects of selected concentrations of antimicrobials from natural (vanillin, thymol, eugenol, carvacrol or citral) or synthetic (potassium sorbate or sodium benzoate) origin on Aspergillus flavus lag time inoculated in laboratory media formulated at water activity ( a w) 0.99 and pH 4.5 or 3.5, were evaluated. Time to detect a colony with a diameter >0.5 mm was determined. Mold response was modeled using the Fermi function. Antimicrobial minimal inhibitory concentration (MIC) was defined as the minimal required inhibiting mold growth for 2 months. Fermi function successfully captured A. flavus dose–response curves to the tested antimicrobials with a highly satisfactory fit. Fermi equation coefficients, P c and k, were used to compare antimicrobials and assess the effect of pH. Important differences in P c and k were observed among antimicrobials, being natural antimicrobials less pH dependent than synthetic antimicrobials. A large P c value represents a small antimicrobial effect on A. flavus lag time; thus, high concentrations are needed to delay growth. A. flavus exhibited higher sensitivity to thymol, eugenol, carvacrol, potassium sorbate (at pH 3.5), and sodium benzoate (at pH 3.5) than to vanillin or citral. MICs varied from 200 ppm of sodium benzoate at pH 3.5 to 1800 ppm of citral at both evaluated pHs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.