Abstract

A study of three-dimensional (3D) perturbed magnetic field structures and transport for edge localized mode control experiments with resonant magnetic perturbations at DIII-D is presented. We focus on ITER-Similar Shape plasmas at ITER relevant electron pedestal collisionalities . This study is performed in comparison with results from TEXTOR-Dynamic Ergodic Divertor circular limiter plasmas. For both experiments the magnetic field structure is analyzed in the vacuum paradigm—superimposing the external RMP field on the unperturbed equilibrium. For TEXTOR L-mode plasmas this description holds for normalized poloidal flux ΨN > 0.7 without tearing modes driven by the RMP field. For DIII-D H-mode plasmas the validity of this approach still needs to be established. In this paper a method is discussed to diagnose the degree of edge stochastization based on a comparison between modeled magnetic footprints on the divertor targets and experimental data. Clear evidence is presented for the existence of a generic separatrix perturbation causing striation of target particle fluxes. However, heat fluxes into these striations are small. This observation can be explained by accounting for the different heat and particle source locations and the 3D trajectories of the open, perturbed field lines toward the divertor target. Analysis of the transport characteristics filling the perturbed separatrix lobes based on initial EMC3/EIRENE modeling suggests the existence of open field lines connecting the stochastic edge to the target pattern. However, the width and inward most extent of the actual stochastic layer cannot yet be quantified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.