Abstract

We present results for the one-dimensional stochastically forced Burgers equation when the spatial range of the forcing varies. As the range of forcing moves from small scales to large scales, the system goes from a chaotic, structureless state to a structured state dominated by shocks. This transition takes place through an intermediate region where the system exhibits rich multifractal behavior. This is mainly the region of interest to us. We only mention in passing the hydrodynamic limit of forcing confined to large scales, where much work has taken place since that of Polyakov.1 In order to make the general framework clear, we give an introduction to aspects of isotropic, homogeneous turbulence, a description of Kolmogorov scaling, and, with the help of a simple model, an introduction to the language of multifractality which is used to discuss intermittency corrections to scaling. We continue with a general discussion of the Burgers equation and forcing, and some aspects of three-dimensional turbulence where — because of the mathematical analogy between equations derived from the Navier–Stokes and Burgers equations — one can gain insight from the study of the simpler stochastic Burgers equation. These aspects concern the connection of dissipation rate intermittency exponents with those characterizing the structure functions of the velocity field, and the dynamical behavior, characterized by different time constants, of velocity structure functions. We also show how the exponents characterizing the multifractal behavior of velocity structure functions in the above mentioned transition region can effectively be calculated in the case of the stochastic Burgers equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call