Abstract

Transgenic mouse models of Alzheimer’s disease (AD) have been recently advanced. Tg2576 mice have been shown to develop progressive β-amyloid (Aβ) neuritic plaques and exhibit impairment of cognitive function. The aim of this study was a better characterization of different aspects of spatial memory performance of transgenic mice, observed at a time when levels of soluble Aβ are elevated and Aβ neuritc plaques start to appear. A general elevation of basal locomotory activity in the home cage was found in Tg2576 mice, which also exhibited an impairment of spontaneous alternation in the Y-maze test. Tg2576 mice were not flexible upon changes in the schedule and failed to codify spatially the testing environment. Consistently, a deficit of spatial memory was also observed when mice were assessed for levels of reactivity to spatial change in the modified open-field test with objects. Compared to controls, Tg2576 mice also exhibited an increased number of explorative approaches to the different objects, and failed to discriminate the displacement of the object. Consistently with the hypothesis of increased disinhibition, a differential behavioural response to the plus-maze paradigm was exhibited by Tg2576 mice. Results clearly indicate that Tg2576 mice are characterized by a number of specific behavioral cognitive alterations, compatible with Alzheimer’s disease (AD), which make them a suitable animal model for testing of novel anti-AD drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.