Abstract

We consider stochastic optimization problems with integral stochastic order constraints. This problem class is characterized by an infinite number of constraints indexed by a function space of increasing concave utility functions. We are interested in effective numerical methods and a Lagrangian duality theory. First, we show how sample average approximation and linear programming can be combined to provide a computational scheme for this problem class. Then, we compute the Lagrangian dual problem to gain more insight into this problem class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.