Abstract

It is shown that the finite resolution inherent in the kinematical coincidence method leads to systematic errors in the deduced (primary) physical quantities if the latter are calculated based on mass and linear momentum conservation equations alone. As an example, application of this method for measuring excitation energy of the fragments from damped reactions is reviewed. In such a case, finite resolution effects generate significant instrumental, or “background” correlations between the physical quantities reconstructed in a straightforward fashion, hence, if not accounted for, they may lead to the qualitative misinterpretation of the data. Experimental measures are discussed which appear necessary in order to ensure proper accuracy of the finite resolution corrections. An alternative method of data analysis is presented which is much less susceptible to the finite resolution effects discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call