Abstract

Electroabsorption studies of the systems (CN)5MII−CN−M‘III(NH3)51- (M = Fe, Ru, Os; M‘ = Ru, Os) reveal that the metal-to-metal or intervalence charge-transfer transitions are associated with a change in dipole moment, |Δμ|, ranging from 11 to 17 D. This change corresponds to a charge-transfer distance of ca. one-half to two-thirds of the geometric separation between the donor and acceptor metals. This result has consequences for electron transfer parameters, where electronic coupling energies are now upwardly revised to as high as 3000 cm-1. The result is also pertinent in the context of nonlinear optics, where Δμ can be utilized in a two level model to estimate wavelength-dependent molecular first hyperpolarizabilities. The change in polarizability (Δα) accompanying the optical intervalence transitions varies from −10 to +310 A3. Comparing the experimental results to a simple two state model suggests that the two state picture is seriously deficient for these systems and that a multitude of available ad...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.