Abstract

Interfaces significantly influence the overall material response especially when the area-to-volume ratio is large, for instance in nanocrystalline solids. A well-established and frequently applied framework suitable for modeling interfaces dates back to the pioneering work by Gurtin and Murdoch on surface elasticity theory and its generalization to interface elasticity theory. In this contribution, interface elasticity theory is revisited and different aspects of this theory are carefully examined. Two alternative formulations based on stress vectors and stress tensors are given to unify various existing approaches in this context. Focus is on the hyper-elastic mechanical behavior of such interfaces. Interface elasticity theory at finite deformation is critically reanalyzed and several subtle conclusions are highlighted. Finally, a consistent linearized interface elasticity theory is established. We propose an energetically consistent interface linear elasticity theory together with its appropriate stress measures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.