Abstract

We investigate the behavior of entanglement entropy at finite temperature and chemical potential for strongly coupled large-N gauge theories in $d$-dimensions ($d\ge 3$) that are dual to Anti-de Sitter-Reissner-Nordstrom geometries in $(d+1)-$dimensions, in the context of gauge-gravity duality. We develop systematic expansions based on the Ryu-Takayanagi prescription that enable us to derive analytic expressions for entanglement entropy and mutual information in different regimes of interest. Consequently, we identify the specific regions of the bulk geometry that contribute most significantly to the entanglement entropy of the boundary theory at different limits. We define a scale, dubbed as the effective temperature, which determines the behavior of entanglement in different regimes. At high effective temperature, entanglement entropy is dominated by the thermodynamic entropy, however, mutual information subtracts out this contribution and measures the actual quantum entanglement. Finally, we study the entanglement/disentanglement transition of mutual information in the presence of chemical potential which shows that the quantum entanglement between two sub-regions decreases with the increase of chemical potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.