Abstract

I give a brief review of higher dimensional quantum Hall effect (QHE) and how one can use a general framework to describe the lowest Landau level dynamics as a noncommutative field theory whose semiclassical limit leads to anomaly free bulk-edge effective actions in any dimension. I then present the case of QHE on complex projective spaces and focus on the entanglement entropy for integer QHE in even spatial dimensions. In the case of $\nu=1$, a semiclassical analysis shows that the entanglement entropy is proportional to the phase-space area of the entangling surface with a universal overall constant, same for any dimension as well as abelian or nonabelian background magnetic fields. This is modified for higher Landau levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call