Abstract

Resistive magnetohydrodynamic simulations are used to evaluate the effects of the aspect ratio A (length to radius ratio) in a spheromak driven by coaxial helicity injection. The simulations are benchmarked against the Sustained Spheromak Physics Experiment (SSPX) [R. D. Wood et al., Nucl. Fusion 45, 1582 (2005)]. Amplification of the bias (“gun”) poloidal flux is fitted well by a linear dependence (insensitive to A) on the ratio of gun current and bias flux above a threshold dependent on A. For low flux amplifications in the simulations, the n=1 mode is coherent and the mean-field geometry looks like a tilted spheromak. Because the mode has relatively large amplitude the field lines are open everywhere, allowing helicity penetration. Strongly driven helicity injection at A≤1.4 in simulations generates reconnection events which generate cathode-voltage spikes, relaxation of the symmetry-breaking modes, and open, stochastic magnetic field lines; this state is characteristic of SSPX. The time sequences of these events suggest that they are representative of a chaotic process. Near the spheromak tilt-mode limit, A≈1.67 for a cylindrical flux conserver, the tilt approaches 90°; reconnection events are not generated up to the strongest drives simulated. Implications for spheromak experiments are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.