Abstract
Opinion polling has been traditionally done via customer satisfaction studies in which questions are carefully designed to gather customer opinions about target products or services. This paper studies aspect-based opinion polling from unlabeled free-form textual customer reviews without requiring customers to answer any questions. First, a multi-aspect bootstrapping method is proposed to learn aspect-related terms of each aspect that are used for aspect identification. Second, an aspect-based segmentation model is proposed to segment a multi-aspect sentence into multiple single-aspect units as basic units for opinion polling. Finally, an aspect-based opinion polling algorithm is presented in detail. Experiments on real Chinese restaurant reviews demonstrated that our approach can achieve 75.5 percent accuracy in aspect-based opinion polling tasks. The proposed opinion polling method does not require labeled training data. It is thus easy to implement and can be applicable to other languages (e.g., English) or other domains such as product or movie reviews.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.